China Custom CHINAMFG Rubber Bellows Flexible Pipe Joint Coupling with Floating Flange

Product Description

Product Description:

Single ball rubber joint is a kind of pipeline joint which is high-flexibility,high-gas tightness,resistance to medium and climate. Limit displacement and Prevent pull off  rubber joint is usually composed of inner rubber layer,fabric reinforcement layer(reinforcement layer have multilayer frictioning nylon cord fabric),middle rubber layer,outer rubber layer,top reinforce metal ring or bead ring. After high pressure, high temperature vulcanization and become. It can reduce the vibration and noise of pipeline.It can also compensate for the Thermal expansion and  cold contraction caused by temperature changed.
 

Product features:

1.Small volume, light weight, good elasticity, easy installation and maintenance.
2.After installation, it can assimilate horizontal, axial and angular displacement caused by pipeline vibration.
3.After installation, it can reduce the noise which produced by the pipeline and water pump etc.
4.Inside has seamless high pressure rubber joint more effectively prevent rubber joint’s inner walls from being corroded by corrosive medium in high temperature resistance,acid and alkali resistant,oil resistance pipeline and raised working life.

 

Technics  condition

Item/type

KXT-1

KXT-2

KXT-3

work pressure MPa( kgf/cm 2 )

1.0(10 )

1.6 ( 16 )

2.5 ( 25 )

explosion pressure MPa( kgf/cm 2 )

2.0 ( 20 )

3.0 ( 30 )

4.5 ( 45 )

vacuum degree KPa(mm/Hg)

53.3 ( 400 )

86.7 ( 650 )

100 ( 750 )

 Applicable  temperature

-15 ºC~ 115 ºC special can reach -30 ºC ~ 250 ºC

Applicable medium

Air,compressed air,water,sea water,hot water,oil,acid,alkali etc.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Materials Used in Manufacturing Flexible Flange Couplings and Their Impact on Performance

Flexible flange couplings are commonly manufactured using various materials, each offering specific properties that can impact their performance in mechanical power transmission systems. The choice of material depends on factors such as application requirements, operating conditions, torque and speed demands, and environmental considerations. Some of the commonly used materials and their impact on performance are as follows:

  1. Elastomeric Materials (Rubber, Polyurethane, etc.): Elastomeric materials like rubber and polyurethane are widely used in flexible flange couplings. These materials provide excellent flexibility, which allows them to handle misalignment and dampen vibrations effectively. They can also absorb shocks and reduce transmission of torsional vibrations between shafts, contributing to smoother operation and reduced wear on connected machinery. However, elastomeric couplings may have limitations in high-temperature or aggressive chemical environments.
  2. Metal Alloys (Steel, Stainless Steel, etc.): Metal alloys, such as steel and stainless steel, are preferred when higher torque and load-carrying capacities are required. They offer superior strength and durability, making them suitable for heavy-duty applications. Stainless steel is particularly resistant to corrosion and is often used in harsh or corrosive environments. Metal couplings may not provide as much flexibility as elastomeric ones, but they compensate with higher torque transmission capabilities and increased reliability.
  3. Composite Materials (Fiberglass, Carbon Fiber, etc.): Composite materials are gaining popularity in various industries due to their unique combination of properties. They can offer a balance of flexibility and strength, making them suitable for applications where both misalignment accommodation and high torque transmission are necessary. Composite couplings are often lightweight, which can be advantageous for reducing the overall weight of rotating systems.
  4. Plastics (Nylon, Delrin, etc.): Plastics are sometimes used in less demanding applications where cost-effectiveness and low friction are essential. While they may not provide the same level of performance as elastomeric or metal couplings, they can still serve adequately in specific settings with lower torque and speed requirements.

The choice of material for flexible flange couplings must consider factors such as application-specific needs, environmental conditions, temperature range, chemical exposure, and maintenance requirements. It is essential to select a coupling material that matches the demands of the application to ensure optimal performance, longevity, and reliability.

flexible flange coupling

Real-World Examples of Successful Flexible Flange Coupling Installations and Their Benefits

There are numerous real-world examples of successful flexible flange coupling installations that have demonstrated significant benefits in various industrial applications. Here are some notable examples:

Example 1: Industrial Pumps

In an industrial pumping system used for fluid transfer, the existing rigid coupling was causing excessive vibration and wear on the pump and motor bearings. The vibrations were leading to frequent maintenance and downtime. After retrofitting with flexible flange couplings, the system experienced a drastic reduction in vibration levels. The couplings effectively dampened vibrations and accommodated minor misalignments, resulting in smoother operation and longer bearing life. The benefits included reduced maintenance costs and increased overall system reliability.

Example 2: Marine Propulsion

In a marine propulsion system, the conventional coupling was not effectively dampening the torsional vibrations generated by the engine. This vibration was affecting the comfort of passengers and causing stress on the drivetrain components. By installing a flexible flange coupling, the system’s torsional stiffness was optimized, and the vibrations were significantly reduced. The result was a smoother and quieter ride for passengers, reduced wear on components, and improved fuel efficiency.

Example 3: Compressors

In a gas compressor application, the existing coupling was unable to handle the misalignment between the driver and driven shafts, leading to premature coupling failures. By replacing the coupling with a flexible flange coupling that could accommodate both angular and axial misalignment, the system experienced improved reliability and reduced unplanned downtime. The flexible coupling also helped reduce peak torque loads during start-up, minimizing stress on the system and extending the equipment’s lifespan.

Example 4: Wind Turbines

Wind turbines require couplings that can handle varying wind conditions and torque fluctuations. Flexible flange couplings have been successfully implemented in wind turbine drivetrains, allowing them to withstand the dynamic loads and misalignments experienced in the field. The flexibility of these couplings ensures smooth power transmission and helps protect the gearbox and generator from damaging vibrations, contributing to the long-term performance and reliability of the wind turbine.

Overall, flexible flange couplings have proven to be reliable and effective solutions in various industries. Their ability to dampen vibrations, accommodate misalignments, and transmit high torque makes them valuable components for improving the performance, efficiency, and lifespan of mechanical systems and equipment.

These real-world examples highlight the versatility and benefits of flexible flange couplings, and they serve as successful case studies for the advantages of using these couplings in diverse industrial applications.

flexible flange coupling

Types of Flexible Flange Couplings in Industrial Applications

Flexible flange couplings come in various designs and configurations to suit different industrial applications. Some of the commonly used types include:

  • 1. Diaphragm Couplings: Diaphragm couplings consist of two flanges with a thin metal diaphragm in between. The diaphragm is designed to flex and move with minimal deformation, allowing for high torsional stiffness and excellent misalignment compensation. They are commonly used in high-speed and high-precision applications, such as pumps, compressors, and servo systems.
  • 2. Disc Couplings: Disc couplings use a series of stainless steel or metallic discs stacked alternately to create flexibility. These couplings can handle high torque, have good misalignment capabilities, and provide excellent vibration damping. They are suitable for applications that require high torque transmission, such as industrial machinery and power generation equipment.
  • 3. Grid Couplings: Grid couplings feature a flexible grid element made of spring steel or elastomeric material between the flanges. The grid provides flexibility while maintaining high torsional rigidity. These couplings are widely used in industries like material handling, conveyors, and pumps.
  • 4. Elastomeric Couplings: Elastomeric couplings use a rubber or elastomeric material as the flexible element. They are highly efficient in dampening vibrations and can accommodate misalignment. Elastomeric couplings find applications in various industries, including HVAC systems, marine equipment, and conveyor systems.
  • 5. Tyre Couplings: Tyre couplings have a flexible tyre-like element made of rubber between the flanges. They offer good shock absorption, compensate for misalignment, and reduce vibrations. These couplings are commonly used in heavy-duty applications, such as mining equipment and steel rolling mills.
  • 6. Oldham Couplings: Oldham couplings use three discs – two outer discs with radial slots and an intermediate disc with perpendicular slots. The intermediate disc slides between the outer discs, providing flexibility and misalignment compensation. They are ideal for transmitting torque between shafts with limited parallel misalignment and are used in printing machines, textile equipment, and robotics.

Conclusion: The selection of a specific type of flexible flange coupling depends on the requirements of the industrial application, including the amount of misalignment, torque transmission, speed, and the need for vibration dampening. Each type of coupling offers unique advantages, making them suitable for various industrial setups where reliable and flexible power transmission is essential.

China Custom CHINAMFG Rubber Bellows Flexible Pipe Joint Coupling with Floating Flange  China Custom CHINAMFG Rubber Bellows Flexible Pipe Joint Coupling with Floating Flange
editor by CX 2024-04-24

flexible flange coupling

As one of leading flexible flange coupling manufacturers, suppliers and exporters of products, We offer flexible flange coupling and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of flexible flange coupling

Recent Posts