China Professional High Speed Transmission Shaft Flexible Couplings Flange Serpentine Shaft Snake Spring Grid Couplings

Product Description

High speed transmission shaft flexible couplings

Description:
The JSS Double Flange Snake Spring Grid Coupling between the power machine and the working machine connects the main and driven ends through 1 or several different kinds or different types of coupling, forming the shafting transmission system. The main structure of the JSS Double Flange Snake Spring Grid Coupling is made up of 2.5 coupling, 2.5 cover, 2 seal rings and snakes spring. It is designed to transmit torque by means of a snake spring embedded in the alveolus of 2 half couplings. The coupling is inserted into the slot of the 2.5 coupling by serpentine springs, so as to realize the link between the driving shaft and the driven shaft. When running, is on the active end tooth face axial force snake spring drives the driven end to transfer torque, so largely avoided the resonance phenomenon, the elastic variables and reed in transmitting torque generated by the mechanical system can obtain good damping effect, the average reduction rate reached more than 36%.
 

Features:
1.Designed for ease of maintenance and grid spring replacement
2.High tensile grid springs ensure superior coupling performance and longer coupling life
3.Split covers allow for easy access to grid springs
4.Interchangeable with industry standard grid couplings
5.Drop-out design ideal for pump applications and servicing
6.Lightweight die-cast aluminum grid cover

Product paramters:

Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.

FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Maintenance Requirements for Flexible Flange Couplings

Proper maintenance is essential to ensure the optimal performance and longevity of flexible flange couplings. Regular inspections and maintenance routines can help detect and prevent potential issues before they escalate into major problems. Here are the key maintenance requirements for flexible flange couplings:

  • Visual Inspections: Regularly inspect the coupling for any signs of wear, damage, or misalignment. Look for cracks, tears, or deformations in the elastomeric elements and ensure that the flanges are securely fastened.
  • Lubrication: Some flexible flange couplings may require periodic lubrication at the flange interface or other moving parts. Check the manufacturer’s guidelines for the recommended lubrication schedule and use the appropriate lubricant.
  • Torque Checks: Verify that the flange bolts or screws are tightened to the specified torque. Loose fasteners can lead to misalignment and reduce the coupling’s performance.
  • Alignment: Ensure that the connected shafts are correctly aligned. Misalignment can cause increased stress on the coupling and lead to premature failure. If misalignment is detected, it should be corrected promptly.
  • Environmental Protection: In harsh environments, such as those with high humidity, chemicals, or abrasive particles, consider implementing protective measures to shield the coupling from potential damage.
  • Inspections After Shock Loads: If the coupling is subjected to shock loads or excessive stress, perform thorough inspections to check for any deformation or damage that may have occurred.
  • Replace Worn Elements: Over time, the elastomeric elements of the coupling may wear out. Replace these elements when they show signs of deterioration to maintain the coupling’s performance.

It is important to follow the manufacturer’s maintenance guidelines and recommendations specific to the particular flexible flange coupling model being used. Regular maintenance not only ensures the coupling’s optimal performance but also enhances the safety of the overall mechanical system.

flexible flange coupling

Comparison of Flexible Flange Couplings with Other Coupling Types

Flexible flange couplings, elastomeric couplings, and beam couplings are all popular choices for transmitting torque and accommodating misalignment in mechanical systems. Each type has its unique features and advantages, making them suitable for various applications. Here’s a comparison of flexible flange couplings with elastomeric and beam couplings:

  1. Flexible Flange Couplings:
    • Design: Flexible flange couplings consist of two flanges with flexible elements (often rubber or polyurethane) connecting them. The flexibility of the coupling allows it to accommodate angular, axial, and parallel misalignments.
    • Misalignment Compensation: Flexible flange couplings can handle moderate to high levels of misalignment, making them suitable for applications where misalignment is expected.
    • Torque Capacity: They generally have a high torque capacity, making them suitable for high-power applications.
    • Backlash: Flexible flange couplings can have minimal backlash, ensuring accurate and precise motion transfer.
    • Performance: They provide damping of vibrations, reducing resonance in the system and minimizing wear on connected components.
    • Installation: Flexible flange couplings are relatively easy to install and require minimal maintenance.
    • Applications: They are commonly used in industrial machinery, power transmission systems, and applications with moderate to high misalignment requirements.
  2. Elastomeric Couplings:
    • Design: Elastomeric couplings use an elastomer (rubber) element to connect two hubs. The elastomer provides flexibility for misalignment compensation.
    • Misalignment Compensation: Elastomeric couplings can handle angular and parallel misalignments but have limited axial misalignment capabilities.
    • Torque Capacity: They have a moderate torque capacity and are suitable for applications with lower torque requirements.
    • Backlash: Elastomeric couplings can have some level of backlash, which may impact precision in certain applications.
    • Performance: They provide damping of vibrations and shock absorption, protecting connected components from damage.
    • Installation: Elastomeric couplings are easy to install and require minimal maintenance.
    • Applications: They are commonly used in pumps, compressors, and applications where dampening of vibrations is crucial.
  3. Beam Couplings:
    • Design: Beam couplings consist of a single piece of material with spiral cuts that provide flexibility for misalignment compensation.
    • Misalignment Compensation: Beam couplings can handle angular misalignment but have limited capabilities for parallel misalignment.
    • Torque Capacity: They have a moderate torque capacity and are suitable for applications with moderate torque requirements.
    • Backlash: Beam couplings typically have low or zero backlash, making them ideal for applications requiring precise motion transfer.
    • Performance: They offer good torsional stiffness and high torsional strength.
    • Installation: Beam couplings are simple to install and require little maintenance.
    • Applications: They are commonly used in small motors, robotics, and applications with tight space constraints.

Ultimately, the choice between flexible flange couplings, elastomeric couplings, or beam couplings depends on the specific requirements of the application. Factors such as the amount of misalignment, torque capacity, backlash tolerance, and the level of vibration dampening needed will influence the selection process. It’s essential to carefully consider the operating conditions and performance characteristics to ensure the coupling chosen optimally meets the demands of the mechanical system.

flexible flange coupling

Accommodation of Misalignment and Vibration Damping in Flexible Flange Couplings

Flexible flange couplings are designed to accommodate misalignment and provide vibration damping during operation, making them suitable for various industrial applications. The following features enable these capabilities:

  • Elastomeric Flexibility: Flexible flange couplings often use elastomeric materials, such as rubber or polyurethane, as the flexible element. These materials offer excellent flexibility, allowing the coupling to compensate for both angular and parallel misalignment between the connected shafts. The elastomeric element deforms under misalignment, preventing excessive loads and stress on the shafts and other connected components.
  • Torsional Compliance: The elastomeric flexibility of the coupling also provides torsional compliance. During operation, the elastomer can twist and flex to absorb torsional vibrations and shocks generated by the connected machinery. This helps reduce the transmission of vibrations and prevents them from propagating throughout the system, leading to smoother and quieter operation.
  • Flange Design: The flanges of flexible flange couplings are typically designed with a series of bolts or screws that secure the elastomeric element between them. The design of the flanges allows for limited axial movement, enabling the coupling to compensate for axial misalignment. This is particularly beneficial in applications where there may be some axial movement or thermal expansion of the shafts.
  • Resilient Bushings: Some flexible flange couplings use resilient bushings or inserts within the flange bolt holes. These bushings add an extra layer of vibration damping and help minimize the transmission of shock loads from one shaft to another. The bushings also assist in absorbing radial and axial vibrations, contributing to smoother operation.
  • Balanced Design: Properly balanced flexible flange couplings minimize vibrations by ensuring that the center of mass coincides with the rotational axis. This helps prevent excessive vibrations due to uneven distribution of mass, which can occur during rotation at high speeds.

By accommodating misalignment and providing vibration damping, flexible flange couplings enhance the overall reliability and performance of mechanical systems. They help protect machinery from excessive loads and stresses, reduce wear and tear on components, and improve the service life of the entire system.

China Professional High Speed Transmission Shaft Flexible Couplings Flange Serpentine Shaft Snake Spring Grid Couplings  China Professional High Speed Transmission Shaft Flexible Couplings Flange Serpentine Shaft Snake Spring Grid Couplings
editor by CX 2024-04-12

flexible flange coupling

As one of leading flexible flange coupling manufacturers, suppliers and exporters of products, We offer flexible flange coupling and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of flexible flange coupling

Recent Posts