China Standard Gfc-80X114 Manufacturer Flexible Clamp Style Shaft Spider Gear Motor Jaw Coupling

Product Description

GFC-80X114 Manufacturer Flexible Clamp Style GFC Shaft Spider Gear Motor Jaw Coupling

 

GFC-80X114 Manufacturer Flexible Clamp Style GFC Shaft Spider Gear Motor Jaw Coupling

model parameter common bore diameter d1,d2 ΦD L LF LP F M tightening screw torque
(N.M)
GFC-14X22 3,4,5,6,6.35 14 22 14.3 6.6 5.0 M2.5 1.0
GFC-20×25 3,4,5,6,6.35,7,8,9,9.525,10 20 25 16.7 8.6 5.9 M3 1.5
GFC-20X30 3,4,5,6,6.35,7,8,9,9.525,10 20 30 19.25 8.6 5.9 M3 1.5
GFC-25X30 4,5,6,6.35,7,8,9,9.525,10,11,12 25 30 20.82 11.6 8.5 M4 2.5
GFC-25X34 4,5,6,6.35,7,8,9,9.525,10,11,12 25 34 22.82 11.6 8.5 M4 2.5
GFC-30×35 5,6,6.35,7,8,9,10,11,12,12.7,14,15,16 30 35 23 11.5 10 M4 2.5
GFC-30X40 5,6,6.35,7,8,9,10,11,12,12.7,14,15,16 30 40 25 11.5 10 M4 2.5
GFC-40X50 6,8,9,10,11,12,12.7,14,15,16,17,18,19,20,22,24 40 50 32.1 14.5 14 M5 7
GFC-40X55 6,8,9,10,11,12,12.7,14,15,16,17,18,19,20,22,24 40 55 34.5 14.5 14 M5 7
GFC-40X66 6,8,910,11,12,12.7,14,15,16,17,18,19,20,22,24 40 66 40 14.5 14 M5 7
GFC-55X49 10,11,12,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 55 49 32 16.1 13.5 M6 12
GFC-55X78 8,10,12,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 55 78 46.4 16.1 19 M6 12
GFC-65X80 14,15,16,17,18,19,20,22,24,25,28,30,32,35,38,40 65 80 48.5 17.3 14 M8 20
GFC-65X90 14,15,16,17,18,19,20,22,24,25,28,30,32,35,38,40 65 90 53.5 17.3 22.5 M8 20
GFC-80X114 19,20,22,24,25,28,30,32,35,38,40,42,45 80 114 68 22.5 16 M8 20
GFC-95X126 19,20,22,24,25,28,30,32,35,38,40,42,45,50,55 95 126 74.5 24 18 M10 30

model parameter Rated torque
(N.M)*
allowable eccentricity
(mm)*
allowable deflection angle
(°)*
allowable axial deviation
(mm)*
maximum speed
rpm
static torsional stiffness
(N.M/rad)
moment of inertia
(Kg.M2)
Material of shaft sleeve Material of shrapnel surface treatment weight
(g)
GFC-14X22 5.0 0.1 1 ±02 10000 50 1.0×10-6 High strength aluminum alloy Polyurethane imported from Germany Anodizing treatment 10
GFC-20X25 5.0 0.1 1 ±02 10000 50 1.0×10-6 15
GFC-20X30 5.0 0.1 1 ^02 10000 53 1.1×10-6 19
GFC-25X30 10 0.1 1   10000 90 5.2X10-6 33
GFC-25X34 10 0.1 1 £)2 10000 90 5.2×10-6 42
GFC-30X35 12.5 0.1 1 ±02 10000 123 6.2×10-6 50
GFC-30×40 12.5 0.1 1 102 10000 123 6.2×10-6 60
GFC-40X50 17 0.1 1   8000 1100 3.8×10-5 115
GFC-40X55 17 0.1 1 ±02 8000 1100 3.8×10-5 127
GFC-40X66 17 0.1 1   7000 1140 3.9×10-5 154
GFC-55X49 45 0.1 1 ±02 6500 2350 1.6×10-3 241
GFC-55X78 45 0.1 1 102 6000 2500 1.6×10-3 341
GFC-65X80 108 0.1 1 ±02 5500 4500 3.8×10-3 433
GFC-65X90 108 0.1 1 ±02 5500 4800 3.8×10-3 583
GFC-80X114 145 0.1 1 £)2 4500 5000 1.8×10-3 1650
GFC-95X126 250 0.1 1 ±02 4000 5000 2.0×10-3 1000

 

 

 

flexible coupling

Can flexible couplings be used in servo motor and stepper motor applications?

Yes, flexible couplings are commonly used in both servo motor and stepper motor applications. They play a crucial role in connecting the motor shaft to the driven load while compensating for misalignments and providing other essential benefits:

  • Servo Motor Applications: Servo motors require precise motion control and high responsiveness. Flexible couplings are well-suited for servo motor applications because they offer the following advantages:
  • Misalignment Compensation: Servo motors are sensitive to misalignments, which can lead to decreased performance and increased wear. Flexible couplings can accommodate angular, parallel, and axial misalignments, ensuring that the motor and driven load remain properly aligned during operation.
  • Vibration Damping: Flexible couplings help reduce vibrations, which is crucial for servo motor applications that require smooth and precise motion. By absorbing and dissipating vibrations, flexible couplings contribute to the overall stability and accuracy of the system.
  • Backlash Minimization: Some flexible couplings have minimal to no backlash, making them suitable for high-precision servo motor applications where any play or clearance between components could affect performance.
  • High Torque Capacity: Servo motors often require high torque transmission capabilities. Flexible couplings are available in various designs and materials, allowing for the selection of couplings with appropriate torque ratings for specific servo motor applications.
  • Stepper Motor Applications: Stepper motors are commonly used in open-loop control systems where precise positioning is necessary. Flexible couplings are used in stepper motor applications due to the following reasons:
  • Misalignment Tolerance: Stepper motors can experience misalignments, especially in dynamic applications. Flexible couplings can handle misalignments without introducing significant backlash or affecting the stepper motor’s accuracy.
  • Cost-Effectiveness: Flexible couplings are often more cost-effective than other types of couplings, making them a practical choice for stepper motor applications, especially in cases where precision requirements are not as stringent as in servo motor systems.
  • Shock Load Absorption: Some stepper motor applications involve abrupt starts and stops, leading to shock loads. Flexible couplings can absorb these shocks and protect the motor and driven load from damage.
  • Simplicity: Flexible couplings are simple in design and easy to install, making them a popular choice in various stepper motor applications.

Overall, flexible couplings offer valuable benefits in both servo motor and stepper motor applications. They help improve system performance, reduce wear on components, and enhance the overall reliability of the motion control systems they are employed in.

flexible coupling

Can flexible couplings be used in pumps, compressors, and fans?

Yes, flexible couplings can be used in pumps, compressors, and fans, and they are commonly employed in these types of rotating machinery. Flexible couplings offer several advantages that make them suitable for such applications:

  • Misalignment Compensation: Pumps, compressors, and fans often experience misalignments due to various factors, such as thermal expansion, foundation settling, or component wear. Flexible couplings can accommodate angular, parallel, and axial misalignments, helping to maintain proper alignment between the driving and driven components.
  • Vibration Damping: Flexible couplings help dampen vibrations in rotating machinery, which is essential for smooth operation and reduced wear on components. In pumps, compressors, and fans, vibration control is crucial to prevent premature failure and maintain reliable performance.
  • Shock Load Absorption: These rotating machines may encounter shock loads during startup or shutdown, especially in reciprocating equipment like reciprocating pumps or compressors. Flexible couplings can absorb and mitigate the impact of such loads, protecting the connected equipment from damage.
  • Reduced Maintenance: Flexible couplings with elastomeric elements or other self-lubricating features require minimal maintenance, leading to cost savings and reduced downtime in pumps, compressors, and fans.
  • Energy Efficiency: Certain flexible coupling designs, such as beam couplings or certain elastomeric couplings, have low mass and inertia. This characteristic helps improve the energy efficiency of rotating machinery, which is particularly beneficial in large-scale pumps, compressors, and fans used in industrial applications.
  • Adaptability: Pumps, compressors, and fans often have varying operating conditions and load profiles. Flexible couplings are adaptable to different operating environments, making them suitable for diverse applications.

In summary, flexible couplings offer several performance-enhancing features that make them well-suited for use in pumps, compressors, and fans. Their ability to accommodate misalignment, dampen vibrations, absorb shocks, and reduce maintenance requirements contributes to improved reliability, efficiency, and longevity of the connected rotating machinery.

flexible coupling

What are the advantages of using flexible couplings in mechanical systems?

Flexible couplings offer several advantages in mechanical systems, making them essential components in various applications. Here are the key advantages of using flexible couplings:

  • Misalignment Compensation: One of the primary advantages of flexible couplings is their ability to compensate for shaft misalignment. In mechanical systems, misalignment can occur due to various factors such as installation errors, thermal expansion, or shaft deflection. Flexible couplings can accommodate angular, parallel, and axial misalignment, ensuring smooth power transmission and reducing stress on the connected equipment and shafts.
  • Vibration Damping: Flexible couplings act as damping elements, absorbing and dissipating vibrations and shocks generated during operation. This feature helps to reduce noise, protect the equipment from excessive wear, and enhance overall system reliability and performance.
  • Torsional Flexibility: Flexible couplings provide torsional flexibility, allowing them to handle slight angular and axial deflections. This capability protects the equipment from sudden torque fluctuations, shock loads, and torque spikes, ensuring smoother operation and preventing damage to the machinery.
  • Overload Protection: In case of sudden overloads or torque spikes, flexible couplings can absorb and distribute the excess torque, protecting the connected equipment and drivetrain from damage. This overload protection feature prevents unexpected failures and reduces downtime in critical applications.
  • Reduce Wear and Maintenance: By compensating for misalignment and damping vibrations, flexible couplings help reduce wear on the connected equipment, bearings, and seals. This results in extended component life and reduced maintenance requirements, leading to cost savings and improved system reliability.
  • Compensation for Thermal Expansion: In systems exposed to temperature variations, flexible couplings can compensate for thermal expansion and contraction, maintaining proper alignment and preventing binding or excessive stress on the equipment during temperature changes.
  • Electric Isolation: Some types of flexible couplings, such as disc couplings, offer electrical isolation between shafts. This feature is beneficial in applications where galvanic corrosion or electrical interference between connected components needs to be minimized.
  • Space and Weight Savings: Flexible couplings often have compact designs and low inertia, which is advantageous in applications with space constraints and where minimizing weight is crucial for performance and efficiency.
  • Cost-Effectiveness: Flexible couplings are generally cost-effective solutions for power transmission and motion control, especially when compared to more complex and expensive coupling types. Their relatively simple design and ease of installation contribute to cost savings.

In summary, flexible couplings play a vital role in mechanical systems by providing misalignment compensation, vibration damping, overload protection, and torsional flexibility. These advantages lead to improved system performance, reduced wear and maintenance, and enhanced equipment reliability, making flexible couplings a preferred choice in various industrial, automotive, marine, and aerospace applications.

China Standard Gfc-80X114 Manufacturer Flexible Clamp Style Shaft Spider Gear Motor Jaw Coupling  China Standard Gfc-80X114 Manufacturer Flexible Clamp Style Shaft Spider Gear Motor Jaw Coupling
editor by CX 2023-11-07

flexible flange coupling

As one of leading flexible flange coupling manufacturers, suppliers and exporters of products, We offer flexible flange coupling and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of flexible flange coupling

Recent Posts